1. (i) substitution/hydrolysis (1)
(ii) electron pair donor (1) 1
(iii)

correct dipole (1)
curly arrow from the O in the OH - to C in the $\mathrm{CH}_{2}(\mathbf{1})$
curly arrow to show movement of bonded pair in the $\mathrm{C}-\mathrm{Br}$ bond (1)
Br^{-}as a product (1)
2. (i) Any two realistic fragments, e.g. $\mathrm{CH}_{3}{ }^{+}: 15 ; \mathrm{C}_{2} \mathrm{H}_{5}^{+}: 29 ; \mathrm{C}_{3} \mathrm{H}_{7}^{+}: 43 ; \mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}: 57 ; \mathrm{OH}^{+}: 17$, etc. (1) (1) Do not penalise missing charge.
(ii) breathalysers/monitoring of air pollution, MOT emission testing, etc. (1) 1
3. Availability of starting materials:
availability
sugar is renewable because it can be grown (1)
ethane is finite because it is obtained by processing of crude oil (1) energy:
fermentation: energy is required for distillation/ hydration: energy is required to generate steam (1)

atom economy and waste products:

atom economy for fermentation < atom economy hydration (1)
In fermentation, CO_{2} is produced in addition to ethanol/ethanol is not the only product (1)
In hydration, ethanol is the only product/hydration is an addition reaction (1)
Atom economy of fermentation could be increased by finding a use CO_{2} (1)

Atom economy linked to a chemical equation to show that hydration has 100% atom economy/fermentation has 51% atom economy (1) 7 max
4. (a) (i) (volatile components) can escape/distil out (1) ethanal is most volatile/bpt less than $60^{\circ} \mathrm{C} /$ partial oxidation (1)
(ii) (volatile components) cannot escape/ refluxed (1) complete oxidation will be achieved/oxidised to the acid (1)
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, 2[\mathrm{O}]$ and $\mathrm{CH}_{3} \mathrm{COOH}$ (1)
rest of equation (1)
5.

(ii) anaerobic, aqueous, temp range $25-40^{\circ} \mathrm{C} /$ warm to just above room temp 2
(iii) no more bubbles/gas/ CO_{2} 1
6. (a) (i) phosphoric acid $/ \mathrm{H}^{+} /$sulphuric acid 1
(ii) lone/electron pair of electrons acceptor 1
(b) (i)

Step $1 \quad$ curly arrow from π-bond to $\mathrm{H}^{+} \quad 1$
Step 2 curly arrow from lone pair on the $\mathrm{O}^{\delta-}$ to $\mathrm{C}+\quad 1$
Step 3 curly arrow from O-H bond to O+ 1
(ii) catalyst ... no marks because it is not consumed/used up in the reaction/owtte
7. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+4 \frac{1}{2} \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} / \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
(1 mark if correct formula for all four chemicals and 1 mark for correct balancing)
8. (i)

(ii) either (2-)methylpropan-1-ol or (2-)methylpropan-2-ol
9.

Minimum - must display/show C=C
10. (a) (i) $\mathrm{H}^{+} 1$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
(ii) Orange to green/black/blue
(b) (i) $\begin{aligned} & \text { contains a C=O/aldehyde, ketone, carboxylic acid and ester/ } \\ & \text { carbonyl/carbonyl in an aldehyde }\end{aligned}$
(ii) does not contain a $\mathrm{O}-\mathrm{H} /$ (hydrogen bonded in a) carboxylic acid
(iii) distillation (no mark) because distillation allows loss of volatile components /removes butanal from oxidising mixture prevents formation of RCOOH/ partial oxidation would be achieved or reverse argument for reflux not being used in that reflux prevents loss of volatile components hence complete oxidation would be achieved/RCOOH would be formed
11. (a) (i)

(ii) $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3} /\left(\right.$ hot) pumice $/ \mathrm{H}_{3} \mathrm{PO}_{4}$
($\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ or dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ loses the mark)

(b) (i)

1

(ii)
from the diol allow
from the Cl -alcohol allow

12. (i) low volatility, = high boiling point/ not easy to vapourise/owtte
intermolecular bonds. = bonds/forces/attractions between molecules
(ii) type of intermolecular bond = hydrogen bond
dipoles on both $\mathrm{O}-\mathrm{H}$ bonds 1
H-bond shown as a 'dashed bond' 1

(iii) (The boiling point of glycerol will be higher than ethanol because there are) more OH groups \therefore more H-bonds
13. (a) (i) butan-2-ol by name or by formula \checkmark
(ii)

curly arrow from the O of the OH - to $\mathrm{C}^{\left(\delta^{+}\right)}$
curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl and correct dipoles
correct products/ allow NaCl curly arrow from lone pair on : OH^{-}
$\mathrm{S}_{\mathrm{N}} 1$ route can still score all 4 marks:
curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl and correct dipoles curly arrow from the O of the OH^{-}to $\mathrm{C}+$ ion correct products/ allow $\mathrm{NaCl} \checkmark$ curly arrow from lone pair on : $\mathrm{OH}^{-} \checkmark \quad 4$
14. (i) $\mathrm{H}^{+} \checkmark \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \quad 2$
(ii)

(iii) carboxylic acid would have an absorption between
$1680-1750 \mathrm{~cm}^{-1} / 1700 \mathrm{~cm}^{-1}$ or $2500-3300 \mathrm{~cm}^{-1}$.
15. (a) (i) $\mathrm{H}_{2} \mathrm{SO}_{4}$ - any mention of (aq) loses the mark 1
(ii) any correct formula/structure or name for benzoic acid 1
(b) (i) dichromate/ $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} /$ permanganate 1
(ii) 1

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}+[\mathrm{O}] \longrightarrow \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}
$$

16. (i)

require an attempt at a 3D structure and bond angles must clearly not be 90°.
require at least one 'wedge' bond or one ‘dotted' bond
(ii) $108-111^{\circ} 1$
$\begin{array}{lll}\text { (iii) volatile/low boiling/gas/non-toxic/non-flammable/unreactive/liquefied under } & \\ \text { pressure/inert } & 1\end{array}$
(iv) homolytic = bonded pair split equally/ each retains 1 electron 1
fission $=$ bond breaking $\quad 1$
(v) $\mathrm{C}-\mathrm{Cl}$ (no mark) because it is the weaker bond 1
(vi) $\mathrm{Cl} \bullet \quad 1$
$\bullet \mathrm{CF}_{3}$ (allow $\mathrm{CF}_{3} \bullet$) 1
(lack of 'dots' penalise once)
17. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$

$$
\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \& \mathrm{CO}_{2} \checkmark\right)
$$

18.

dipoles 1
hydrogen bond between O in one $\mathrm{O}-\mathrm{H}$ and H in the other $\mathrm{O}-\mathrm{H}$ 1
lone pair from O involved in the H -bond 1
19. (a) (i) (volatile components) can escape/distil out 1 ethanal is most volatile/b pt less than $60^{\circ} \mathrm{C} /$ partial oxidation 1
(ii) (volatile components) cannot escape/ refluxed 1 complete oxidation will be achieved/oxidised to the acid 1
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$
$\left(\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \checkmark\right) \quad 2$
(c) spectrum C 1
spectrum C only shows absorption at $1700 \mathrm{~cm}^{-1}$ for the $\mathrm{C}=\mathrm{O} \quad 1$
the other two spectra contain the OH group absorption at approx $3000 \mathrm{~cm}^{-1} \quad 1$
20. (a) (i) reaction 1 1
(ii) reaction $4 \quad 1$
(iii) reaction $3 \quad 1$
(b) (i) lone pair/electron pair donor 1

Correct dipole 1
Curly arrow from the O in the OH^{-}to C in the CH_{2} 1
Curly arrow to show movement of bonded pair in the $\mathrm{C}-\mathrm{Cl}$ bond 1
Cl^{-}as a product 1
(c) (i) same molecular formula , different structure/arrangement of atoms. 2(same formula, different structure.)
(ii)

ソ				
B				

(d) (i) addition, (not additional) 1
(ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene 1
(iii) 1

21. (a) (i) prop-2-en-1-ol $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}$ must show the $\mathrm{C}=\mathrm{C}$ double bond acrolein

must clearly show the aldehyde group and the $C=C$
(ii) alkene/C=C double bond 1

22. (i) $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OOCCHCH}_{2} /\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ 1
$\mathrm{H}_{2} \mathrm{O}$1

or

1 mark if the ester group, 1 mark for the rest of the molecule. $\mathrm{COO} / \mathrm{CO}_{2}$ without displaying the ester, they can still get 1 mark.
23. Essential marks:
Order
reason for the order
$\mathrm{RI}>\mathrm{RBr}>\mathrm{RCl} /$ owtte
C-I bond weakest/length/C-Cl bond strongest and mention/intermolc forces loses the mark
an equation
$\mathrm{Ag}^{+}+\mathrm{X}^{-} \longrightarrow \mathrm{AgX}$ (solid or ppt) or an equation for hydrolysis/using OH - or $\mathrm{H}_{2} \mathrm{O}$

```
max = 3
```

Two possible methods of monitoring the reaction

Method 1

AgNO_{3}
Ethanol \& Waterbath/
/hydroxide
temp $40-80^{\circ} \mathrm{C}$
not heat/not bunsen
relative rate of precipitation

Method 2

AgNO_{3}
$\mathrm{NaOH} / \mathrm{OH}^{-}$
\& neutralise with HNO_{3}
relative amount of precipitation1
24. Properties:

Non-toxic/harmless 1
non-flammable 1
any two from:
(propellant in) aerosols because it is volatile/ unreactive/ non-toxic/ easily compressed
blowing polystyrene
dry cleaning
degreasing agent
fire extinguishers because it is unreactive because it is a good solvent for organic material because it is a good solvent for organic material because it is non-flammable

QWC

- reasonable spelling, punctuation and grammar throughout

25. (a)

(b) (i) orange to green/dark green/brown/black 1
(ii) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} / \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+2[\mathrm{O}] \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \quad \checkmark \checkmark$ 2
1 mark available for correct formula of the carboxylic acid
(iii) Identify isomer 2-methylpropan-1-ol by appropriate number/name/formula 1
(c) (i) CH_{2} has mass $=14,14 \times 4=56$ 1
$\therefore \mathrm{C}_{4} \mathrm{H}_{8}$ 1
(ii) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2} \mathrm{O} \checkmark$ 1
(iii) Identify butan-2-ol by appropriate number/name/formula 1
(d) (i) $\mathrm{H}_{2} \mathrm{SO}_{4}$ 1
(ii) $0.06 \checkmark$ 1
(iii) 60\% 1
26. (a) (i) alkene \checkmark 1
alcohol/hydroxy/hydroxyl \checkmark1
(b) (i) I = alkene \& II = alcohol... both are needed 1
(ii) decolourised / colourless 1
(iii)

(iv) X as shown below

(c) (i) $\quad \mathrm{Ni} / \mathrm{Pt} / \mathrm{Rh} / \mathrm{Pd} \checkmark$
(ii) compound \mathbf{B} is $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$
(iii) $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O} \checkmark \quad 1$
27. (a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ $2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ gets 1 mark
(b) Fermentation 1
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2} \checkmark \quad 1$
Yeast /enzyme / temperature about $30^{\circ} \mathrm{C} /$ batch process $\checkmark \quad 1$
Hydration of ethene. $\checkmark \quad 1$
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \checkmark \quad 1$
Temp $>100^{\circ} \mathrm{C} /$ Press $370-100 \mathrm{~atm} \quad / 6-20 \mathrm{MPa} /$ phosphoric acid catalyst/
continuous process \checkmark
Glucose is obtained from plants $\checkmark \quad 1$
Ethene is obtained from crude oil/cracking/fossil fuel $\checkmark \quad 1$
glucose is renewable/ethene isn't $\checkmark \quad 1$
1 mark available for Quality of written communication..... base the award of the mark on the ability to communicate the essential chemistry by correct use of at least two from:
fermentation/hydration/catalyst/renewable/sustainable/biofuel/
enzymes/finite/cracking
28. (a) (i) $\mathrm{C}_{4} \mathrm{H}_{10} \checkmark$ 1
(ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \checkmark \quad 1$
(iii) B and E $\checkmark \quad 1$
(iv) A and $\mathrm{F} \checkmark \quad 1$
(b) $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightarrow\right) \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2} \mathrm{O} \checkmark \quad 1$
(c) any unambiguous formula:

$\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$

$\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$

buta-1,3-diene \checkmark
name ecf to the structure only if structure above has formula $\mathrm{C}_{4} \mathrm{H}_{6}$
29. (a) Cl^{-}must be shown as a product $\checkmark \quad 1$
(at least 1) lone pair of electrons on the O in the OH^{-}with curly arrow from the lone pair on the OH^{-}to the $\mathrm{C}^{\left({ }^{\delta+}\right)} \checkmark$
dipoles on the C-Cl bond $\checkmark \quad 1$
curly arrow from C-Cl bond to the Cl $l^{\delta^{-}} \checkmark \quad 1$
The mechanism below would get all 4 marks.

(b) (i) mark for method/dividing by $A_{\mathrm{r}} / \mathrm{C}, 3.15 ; \mathrm{H}, 6.3 ; \mathrm{Cl}, 1.58 . \checkmark 1$
divide by smallest to get $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl} \checkmark \quad 1$
alternative method:
$\%$ of each element $\times 127 \div A_{\mathrm{r}}$ of that element $=$ molecular formula, hence deduce empirical formula
(ii) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2} \checkmark$
(iii) any unambiguous form of:

(iv) any unambiguous form of:

ecf to (iii) provided that there are two OHs in (iii)
30. (a)
(i) Alkene/C=C $\checkmark \quad 1$

Alcohol/ROH/hydroxy/hydroxyl/OH (not OH^{-}or hydroxide)
(ii) One of the C in both $\mathrm{C}=\mathrm{C}$ is joined to two atoms or groups that are the same
(b) Observation

Molecular formula

$$
\begin{array}{ll}
\text { decolourisation }\left(\text { of } \mathrm{Br}_{2}\right) \checkmark & 1 \\
\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OBr}_{4} \checkmark \checkmark & 2 \\
\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OBr}_{2} \text { gets } 1 \text { mark } &
\end{array}
$$

(c) reagent
$\mathrm{CH}_{3} \mathrm{COOH}$
1
catalyst $\quad \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+} / \mathrm{HCl}(\mathrm{aq})$ or dilute loses the mark $\checkmark \quad 1$
(d) (i) $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}+2[\mathrm{O}] \rightarrow \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \checkmark \checkmark$

2
1 mark for $\mathrm{H}_{2} \mathrm{O}$ and 1 mark for 2[O]
(ii) The infra-red spectrum was of compound \mathbf{Y}
because absorption between $1680-1750 \mathrm{~cm}^{-1}$ indicates a $\mathrm{C}=\mathrm{O}$
and the absence of a peak between $2500-3300 \mathrm{~cm}^{-1}$ shows the absence of the OH hydrogen bonded in a carboxylic acid

